Amino acid sequence dependence of nanoscale deformation mechanisms in alpha-helical protein filaments

Author:

Bertaud J1,Qin Z1,Buehler M J1

Affiliation:

1. Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

Abstract

Alpha-helical protein filaments are the key constituent of biological materials such as cells, hair, hoof, and wool, where they assemble to form hierarchical filamentous structures. Here the focus is on the multiscale mechanical properties of this class of protein materials, where a systematic analysis is reported on the competition between protein rupture and interprotein sliding for different molecular geometries and variations in the amino acid sequence. Through this analysis, facilitated by simulations with a coarse-grained mesoscale model of alpha-helical protein domains, key molecular deformation mechanisms are identified in alpha-helical protein filaments. This study specifically focuses on elucidating the nanoscale mechanisms of strain accommodation under variation of structural and chemical parameters. The main finding is that interprotein sliding is a dominating mechanism that persists for a variety of geometries and realistic biologically occurring amino acid sequences.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3