Effect of temperature and strain rate on the constitutive behaviour of oriented polypropylene tubes

Author:

Azhikannickal E1,Jain M1,Bruhis M1

Affiliation:

1. Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada

Abstract

The lighter weight of thermoplastics compared with metals make these materials an attractive alternative for automotive structural components. In particular, oriented thermoplastic tubes, typically uniaxially or biaxially oriented by an extrusion process, possess increased strength along the orientation directions. In addition to their good strength, the ductility of these materials, when formed at elevated temperatures, is also improved. For development of analytical and/or finite element models of the elevated-temperature forming of uniaxially oriented thermoplastic tubes, suitable constitutive models describing the temperature- and strain-rate-dependent stress—strain behaviour of the material along the axial (or orientation) and hoop (perpendicular to orientation) direction are required. The behaviours along both directions of the tube are required since its properties are anisotropic as a result of the extrusion process. The G'Sell et al. constitutive model, modified in this study to account for the effect of temperature, was shown to capture the uniaxial behaviour of oriented polypropylene tubes accurately along the axial and hoop direction at a range of elevated temperatures and strain rates.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation

Reference16 articles.

1. Deep drawing self-reinforced thermoplastic sheet

2. Tube hydroforming—research and practical application

3. 4 Park J. S., Kim J. H., Park C. D., Kim Y. S. Development of hydroforming simulator for thin walled tube. In Proceedings of the 1999 Japanese Spring Conference for the Technology of Plasticity, Saitama, Japan, 13–15 May 1999, pp. 235–236 (Japan Society for Technology of Plasticity, Tokyo).

4. A tensile flow stress model for oriented polypropylene

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3