Development of a full elasto-plastic adhesive joint design analysis

Author:

Crocombe A D1,Bigwood D A2

Affiliation:

1. Department of Mechanical Engineering, University of Surrey, Guildford, UK.

2. FEA Limited, Kingston-upon-Thames, UK

Abstract

A previous adhesive joint analysis that accommodated non-linear adhesive behaviour is extended to model the elasto-plastic response of the adherends. The resulting analysis models the joint as an adherend-adhesive sandwich capable of sustaining any combination of end load conditions, thus enabling a wide variety of adhesive joints to be modelled. The adhesive is assumed to behave as a coupled set of non-linear shear and tension springs, and the adherends as cylindrically bent plates which yield under the action of combined tension and bending. The complete problem is reduced to a set of six non-linear first-order ordinary differential equations which are solved numerically using a finite-difference method. In this way a reasonable assessment of adhesive stresses and strains can be obtained easily, without resorting to the complexity of a two-dimensional finite element solution. A comparison between the results from these two methods has been made and is presented in this paper after the outline of the analysis derivations.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modelling and Simulation

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3