Residual stresses in rolled and machined nickel alloy plates: Synchrotron X-ray diffraction measurement and three-dimensional eigenstrain analysis

Author:

Korsunsky A. M1,Regino G. M1,Latham D. P1,Li H. Y2,Walsh M. J3

Affiliation:

1. Department of Engineering Science, University of Oxford, Oxford, UK

2. Department of Metallurgy and Materials, University of Birmingham, Birmingham, UK

3. Rolls-Royce plc, Derby, UK

Abstract

Most engineering components made from wrought metallic alloys undergo complex sequences of manufacturing operations. These processing steps frequently include extrusion, forging, or rolling, followed by machining and heat treatment. Since such components will be subjected to service loading as part of engineering assemblies, their durability must be assessed using suitably reliable life prediction models. The present study is aimed at the investigation of a combination of experimental and modelling techniques that involves microstructural investigation, diffraction measurement of residual elastic strains, and finite element simulation of residual stress distributions. Eigenstrain-based modelling approach to the analysis of processing-induced residual stresses has been previously presented in the two-dimensional approximation, i.e. under the assumption that the equivalent permanent plastic strain field induced by processing is equibiaxial. Several different formulations were considered and compared, including plane stress, plane stress, and three-dimensional models. In the present study a further development of the eigenstrain-based analysis approach that incorporates the experimental data obtained from synchrotron X-ray diffraction measurements of residual elastic strains in two complementary cross-sections of a forged and machined nickel superalloy plate is reported. The microstructure was assessed using electron backscattered diffraction, and near-surface residual stresses evaluated using laboratory X-ray diffraction. It is found that the results of fully three-dimensional formulation differ from two-dimensional approximations particularly in the vicinity of machined surfaces, having potentially significant implications for durability assessment and fatigue life models.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3