Post-buckling of internal-pressure-loaded laminated cylindrical shells surrounded by an elastic medium

Author:

Shen Hui-Shen1

Affiliation:

1. School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China

Abstract

This paper presents a study on the post-buckling response of an anisotropic laminated cylindrical shell of finite length embedded in a large outer elastic medium and subjected to internal pressure in thermal environments. The surrounding elastic medium is modelled as a tensionless Pasternak foundation reacting in compression only. The governing equations are based on higher-order shear deformation shell theory with von Kármán–Donnell kinematic non-linearity and including extension–twist, extension–flexural, and flexural–twist couplings. The thermal effects are also included, and the material properties are assumed to be temperature dependent. Non-linear prebuckling deformations and the initial geometric imperfections of the shell are both taken into account. A singular perturbation technique is employed to determine the post-buckling response of the shells, and an iterative scheme is developed to obtain numerical results without using any assumption concerning the shape of the contact region between the shell and the elastic medium. Numerical illustrations concern the buckling and post-buckling response of cross-ply and symmetric angle-ply laminated shells surrounded by an elastic medium of tensionless foundation of the Pasternak type, from which results for conventional elastic foundations are obtained as comparators. The results reveal that unilateral constraints have a significant effect on the post-buckling response of shells subjected to internal pressure in thermal environments when the foundation stiffness is sufficiently large.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modelling and Simulation

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3