A rig for controlled cyclic strain and temperature testing

Author:

Beauchamp D J1,Ellison E G1

Affiliation:

1. University of Bristol

Abstract

A servo-hydraulic test rig capable of applying combined temperature and strain or load cycles has been developed and commissioned. The nature of the test has dictated the specimen form as a hollow, hour-glass type. The critical problem of a suitable extensometer for temperature and strain cycling has been solved. The device designed and produced shows negligible transient temperature effects, has a high resolution of better than 0.1 μm, and is mechanically very stable. The heating and cooling is controlled by an induction heating system with grip cooling; additional cooling is available using compressed air passing through the hollow specimen. The system is capable of following a temperature ramp to within 1°C linearity. The thermal strain associated with a temperature cycle is compensated for using a microprocessor system specially developed for the purpose, which also enables a mechanical strain-stress loop to be plotted during a test. Both ‘in-phase’ and ‘out-of-phase’ temperature/strain cycles have been carried out and development continues to include dwell periods.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modelling and Simulation

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MEASUREMENT OF THE TRANSVERSE LOCAL STRAIN RESPONSE OF SINGLE CRYSTAL SUPERALLOYS;Local Strain and Temperature Measurement;1999

2. The Use of Plastic Strain Control in Thermomechanical Fatigue Testing;Fatigue under Thermal and Mechanical Loading: Mechanisms, Mechanics and Modelling;1996

3. THE DETERMINATION OF HYSTERESIS LOOPS IN THERMO-MECHANICAL FATIGUE USING ISOTHERMAL STRESS-STRAIN DATA;Fatigue & Fracture of Engineering Materials and Structures;1994-04

4. Cyclic stress-strain response during isothermal and thermomechanical fatigue;International Journal of Fatigue;1994

5. FRACTURE AND LIFE PREDICTION UNDER THERMAL-MECHANICAL STRAIN CYCLING;Fatigue & Fracture of Engineering Materials and Structures;1994-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3