Affiliation:
1. Lund Institute of Technology Department of Machine Elements Lund, Sweden
Abstract
This paper presents a method to calculate the forces in a chain and, thus, the resulting load distribution along the sprockets in a chain transmission working at a moderate or high speed. When the chain drive is loaded, the rollers that contact the sprockets will move along the flanks to different height positions. There are mainly two different ways to determine the actual positions: to assume the positions or to use force equilibrium and to calculate the positions. To find the correct solution the geometry and the force equilibrium are used which will give each roller's position, along the flank. This method demands knowledge of all parts of the chain, even the slack part. Therefore it has been necessary to model both the connecting tight and the slack spans in which power between the two sprockets is transmitted. The gravitational force acting at the chain has been included in the complete model so that the position of the rollers and the forces in the links at the slack span can be calculated. The elastic deformation in the chain has also been included. The moment of inertia in the two sprockets and in the outer geometry has been taken into account, but not the inertia forces in the chain.
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献