Gear condition monitoring by a new application of the Kolmogorov—Smirnov test

Author:

Andrade F A1,Esat I I1,Badi M N M2

Affiliation:

1. Brunel University Dynamical Systems and Neural Networks Research Group, Department of Mechanical Engineering Middlesex, Uxbridge, UK

2. University of Hertfordshire Department of Aerospace, Civil and Automotive Engineering Hatfield, UK

Abstract

This paper introduces a new technique for the vibration condition monitoring of a set of spur gears. This technique, the Kolmogorov—Smirnov (KS) test, is based on a statistical comparison of two vibration signatures, which tests the ‘null hypotheses that the cumulative density function (CDF) of a target distribution is statistically similar to the CDF of a reference distribution’. In practice, the KS test is a time-domain signal processing technique that compares two signals and returns the likelihood that the two signals are statistically similar (i.e. have the same probability distribution function). Consequently, by comparing a given vibration signature with a number of template signatures for known gear conditions, it is possible to state which is the most likely condition of the gear under analysis. It must be emphasized that this is not a moment technique as it uses the whole CDF instead of sections of the CDF. In this work, the KS test is applied to the specific problem of direct spur gear condition monitoring. It is shown that this test not only successfully identifies the condition of the gear under analysis (brand new, normal, faulty and worn out), but also gives an indication of the advancement of the crack. Furthermore, this technique identifies cracks that are not identified by popular methods based on the statistical moment and/or time-frequency (TF) analysis and the vibration signature. This shows that, despite its simplicity, the KS test is an extremely powerful method that effectively classifies different vibration signatures, allowing for its safe use as another condition monitoring technique.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3