Affiliation:
1. Institute of High Performance Computing Computational Fluid Dynamics Division Singapore
Abstract
This paper compares the performance of three mesh movement algorithms: Laplacian smoothing, linear spring analogy and torsion spring analogy for a fluid mesh update in staggered fluid-structure interaction (FSI) simulations with a non-linear free surface. The mesh updating schemes are applied to simulate three representative cases of the above-stated dual moving boundary problem. The performances of the algorithms are gauged on the basis of their ability to delay the initiation of a complete remesh of the fluid domain while maintaining solution accuracy. To satisfy this dual objective, the mesh-updating algorithm should not only prevent mesh failure but should also maintain well-shaped triangles. The reasons for the failure of different schemes are explained and suitable modifications are suggested/implemented to enhance thier performance. It is shown that these modifications prove to be very successful in improving the effectiveness of the algorithms.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献