Plastic deformation and fracture characteristics of Hadfield steel subjected to high-velocity impact loading

Author:

Lee W-S1,Chen T-H1

Affiliation:

1. National Cheng Kung University Department of Mechanical Engineering Tainan, Taiwan

Abstract

Investigation of the impact behaviour of Hadfield steel has been carried out in a broad range of strain rates from 10−3 to 9 × 103s−1 by means of a servo-hydraulic machine and a compressive split Hopkinson bar. The effects of strain rate on the impact properties, substructure evolution and fracture resistance have been evaluated. The observed stress-strain response is influenced greatly by strain rate, resulting in obvious changes of work hardening rate, strain rate sensitivity and activation volume. This rate-dependent behaviour is in good agreement with model predictions using the Zerilli-Armstrong constitutive law. Dislocation tangle and deformation twin substructures are also found to develop as a function of strain rate. Increasing dislocation and twin densities enhance the work hardening rate and flow strength. Catastrophic failure at high rates results from the formation of localized shear bands. With increasing strain rate, there is an increase in brittle cleavage microfracture, resulting in ductility loss. Microcracking initiates at grain boundaries due to the presence of carbide precipitates.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3