Design constraints of five-arc Roots vacuum pumps

Author:

Wang P-Y1,Fong Z-H1,Fang H S2

Affiliation:

1. National Chung-Cheng University Department of Mechanical Engineering Chia-Yi, Taiwan

2. Industrial Technology Research Institute Mechanical Industry Research Laboratories Hsin-Chu, Taiwan

Abstract

The design constraints for the tooth profile of the five-arc Roots vacuum pump are derived and discussed in this paper. The addendum portion of the five-arc tooth profile comprises five smoothly connected circular arcs, while the dedendum portion consists of conjugate curves of the addendum portion of the mating rotor. The top land of the proposed rotor profile is a circular arc with its centre coinciding with the centre of rotation. Therefore, the gap between the top land of the rotor and the wall of the chamber turns into a long and narrow path, which provides better gas sealing and wider inlet opening. The design constraints of the rotor profile are quite complex owing to the limitations of zero carryover and the condition of non-undercutting. A design procedure is proposed for determining the feasible design region by considering the geometry constraints, zero carryover and non-undercutting. By using the proposed procedure, wider inlet opening and better gas sealing are expected, while the characteristic of zero carryover is maintained. The results of experiment show that the ultimate pressure of the prototype of the five-arc Roots vacuum pump is 2,5 × 10-3 torr, and the maximum pumping speed is 1600L/min. The performance of the prototype is excellent compared with commercially available mechanical dry vacuum pumps.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference7 articles.

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3