Mechanisms of fatigue crack initiation in annealed, quenched and tempered 4340 steel

Author:

Yang F1,Saxena A1

Affiliation:

1. Georgia Institute of Technology School of Materials Science and Engineering Atlanta, Georgia, USA

Abstract

The mechanisms of fatigue crack initiation in annealed and quenched and tempered 4340 steel were characterized. Several axial fatigue specimens were tested at a strain range of 1.5 per cent to various fractions of fatigue life. The tested specimens were thoroughly examined using a scanning electron microscope (SEM) and an atomic force microscope (AFM). The latter technique provides a better resolution and is also capable of providing quantitative surface topographical information. In annealed 4340 steel, the initial fatigue damage is shown to accumulate in the form of steps between ferrite and cementite laths in the pearlitic microstructure. Subsequent damage accumulation occurs by formation of slip bands which are formed by joining several adjoining steps. Cracks initiate from the slip bands. In quenched and tempered steels, the fatigue damage accumulates at discontinuities at a more rapid rate than in the remaining regions of the specimen, leading to crack initiation and growth emanating primarily from the discontinuities. The roughness of the specimen surface increases with fatigue damage in both microstructures, as demonstrated from the measurements obtained from AFM studies. Such correlations may be useful in predicting the remaining life of cyclically loaded structural components.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on the load equivalent model of wheel loader based on pseudo-damage theory;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2020-04-19

2. Fatigue of Steels;Reference Module in Materials Science and Materials Engineering;2016

3. Quantitative study of surface roughness evolution during low-cycle fatigue of 316L stainless steel using Scanning Whitelight Interferometric (SWLI) Microscopy;International Journal of Fatigue;2013-03

4. Fatigue characterization and modeling of 30CrNiMo8HH under multiaxial loading;Materials Science and Engineering: A;2011-03

5. Development of a Micro-beam Method to Investigate the Fatigue Crack Growth Mechanisms of Submicron-scale Cracks;Experimental Mechanics;2008-10-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3