Affiliation:
1. School of Engineering, Shiraz University, Shiraz, Iran
Abstract
Numerical studies of fluid flow and heat transfer are made in the separated, reattached, and redeveloped regions of the three-dimensional air flow on an array of finite plates with blunt leading edge. The flow reattachment occurs at a place downstream from the leading edge and the heat transfer coefficient becomes maximum around this region. The heat transfer coefficient is found to increase sharply near the leading edge and reduces in the wake. For the range of the parameters investigated in this study, some correlations have been developed for the length of reattachment region and variation of overall heat transfer coefficient for the considered bluff obstacles with various geometry and flow Reynolds number. For such blunt plates, when they are acting like fins, fin efficiency is determined and a relation based on flow Reynolds number and geometric parameters is developed to predict variation of the overall fin efficiency.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献