Probabilistic Failure Analysis of Austenitic Nuclear Pipelines against Stress Corrosion Cracking

Author:

Priya C1,Rao K. B.1,Anoop M. B.1,Lakshmanan N1,Gopika V2,Kushwaha H. S.2,Saraf R. K.2

Affiliation:

1. Structural Engineering Research Centre, CSIR Campus, Taramani Chennai, India

2. Bhabha Atomic Research Centre, Mumbai, India

Abstract

Stress corrosion cracking (SCC) is an important degradation mechanism to be considered for failure assessment of nuclear piping components made of austenitic steels. In this paper, an attempt has been made to compute the failure probabilities of a piping component against SCC with time using Monte Carlo simulation (MCS) technique. The initiation and propagation stages of stress corrosion cracks are modelled using the general methodology recommended in PRAISE modified by using the recommendations given by ASM for more rational modelling of stress field around cracks for estimating their growth with time. Degree of sensitization, applied stress, time to initiation of SCC, initial crack length, and initiation crack growth velocity are considered as random variables. An attempt has been made to study the stochastic propagation of stress corrosion cracks with time, using MCS technique. The trend of the distribution of crack depths at the initial stages obtained from simulation are compared and is found to be in satisfactory agreement with the relevant experimental observations reported in the literature. The failure probabilities are computed using two different failure criteria, namely (a) based on net-section stress and detectable leak rate as recommended in PRAISE and (b) based on R6 approach (using R6-option 1 curve as the failure assessment diagram). The procedure presented in the paper is general and the usefulness of the same is demonstrated through an example problem.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3