Measurement of interface pressure in interference fits

Author:

Lewis R1,Marshall M B1,Dwyer-Joyce R S1

Affiliation:

1. Department of Mechanical Engineering, University of Sheffield, Sheffield, UK

Abstract

When components such as bearings or gears are pressed onto a shaft, the resulting interference induces a pressure at the interface. The size of this pressure is important as many components fail because fatigue initiates from press-fit stress concentrations. The aim of the present work was to develop ultrasound as a tool for non-destructive determination of press-fit contact pressures. An interference fit interface behaves like a spring. If the pressure is high, there are few air gaps, so it is very stiff and allows transmission of an ultrasonic wave. If the pressure is low, then interface stiffness is lower and most ultrasound is reflected. A spring model was used to determine maps of contact stiffness from interference-fit ultrasonic reflection data. A calibration procedure was then used to determine the pressure. The interface contact pressure has been determined for a number of different press- and shrink-fit cases. The results show a central region of approximately uniform pressure with edge stress at the contact sides. The magnitude of the pressure in the central region agrees well with the elastic Lamé analysis. In the more severe press-fit cases, the surfaces scuffed which led to anomalies in the reflected ultrasound. These anomalies were associated with regions of surface damage at the interface. The average contact pressure in a shrink-fit and press-fit joint were similar. However, in the shrink-fit joint more uneven contact pressure was observed with regions of poor conformity. This could be because the action of pressing on a sleeve plastically smooths out long wavelength roughness, leading to a more conforming surface.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finite Element Analysis of a Shrink Fitted Disc-Shaft Rotating System;Tehnicki vjesnik - Technical Gazette;2023-12-15

2. Fretting-fatigue of shrink fit lug-bush assemblies: Interference-fit effect;Tribology International;2023-08

3. Interference Fit Contact Finite Element Modelling and Optimization for Modal Analysis and Friction Instability;AIAA SCITECH 2023 Forum;2023-01-19

4. Flexible assembly research for cylindrical interference fit with form error in shaft-hole structures;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2022-06-10

5. Analysis of Interference-Fit Joints;Applied Sciences;2021-12-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3