A superplastic forming limit diagram concept for Ti-6Al-4V

Author:

Kröhn M A1,Leen S B1,Hyde T H1

Affiliation:

1. School of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, Nottingham, UK

Abstract

The current paper is concerned with the development of a simplified method for predicting failure due to plastic instability during the superplastic forming (SPF) of titanium alloys. The rationale is that a key factor in the process of reliable failure prediction is the incorporation of a mechanisms-based model, which includes microstructural effects, such as static and dynamic grain growth and associated hardening, and which is also independent of the forming strainrate. Existing methods for predicting plastic instability during conventional metal-forming are discussed along with previous attempts at predicting failure during SPF. It is shown that no easy-to-interpret method, such as the forming limit diagram (FLD) in conventional forming, exists for SPF. Consequently, an SPFLD concept in a major strain (ε1), minor strain (ε3), and equivalent strain-rate space (εeq) is presented on the basis of uniaxial SP ductilities across a range of strainrates along with the Hill-Swift instability criteria and using finite element-predicted ε13eq paths for key points on the forming blank to predict failure. The predicted results are validated against measured data for Ti-6Al-4V at different strain-rates.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3