Effect of powder mix composition on Al foam morphology

Author:

Costanza G1,Gusmano G2,Montanari R1,Tata M E1,Ucciardello N1

Affiliation:

1. Dipartimento di Ingegneria Meccanica, Università di Roma ‘Tor Vergata’, Rome, Italy

2. Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma ‘Tor Vergata’, Rome, Italy

Abstract

The effect of mix composition on foam morphology has been examined by image analysis carried out on metallographic sections of Al foams prepared by powder metallurgy. Two sets of samples have been prepared by using SiC particles with mean sizes of 37 and 60 µm. Each set consists of 16 groups of samples with different amounts of TiH2 (0.1, 0.2, 0.4, and 0.6 wt%) and SiC (0.8, 2.8, 6, and 9 wt%). The distribution of SiC particles on the internal walls of the bubbles has been investigated by scanning electron microscopy observations, which evidenced also the presence of particles of another phase, identified as Ti3Al by energy dispersion spectroscopy. Some tests, performed without SiC particles, showed that the Al foaming occurs also under these conditions, however foams exhibit few bubbles of very large size and irregular shape. Experimental data have been used for training two multi-layer feedforward artificial neural networks. The models represent useful tools for predicting morphologic features of foams for any given mix composition in the training range.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3