A nanometre-scale fibre-to-matrix interface characterization of an ultrasonically consolidated metal matrix composite

Author:

Friel R J1,Harris R A1

Affiliation:

1. Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK

Abstract

Future ‘smart’ structures have the potential to revolutionize many engineering applications. One of the possible methods for creating smart structures is through the use of shape memory alloy (SMA) fibres embedded into metal matrices. Ultrasonic consolidation (UC) allows the embedding of SMAs into metal matrices while retaining the SMA's intrinsic recoverable deformation property. In this work, NiTi SMA fibres were successfully embedded into an Al 3003 (0) matrix via the UC layer manufacturing process. Initially the plastic flow of the Al matrix and the degree of fibre encapsulation were observed using optical microscopy. Then microstructural grain and sub-grain size variation of the Al 3003 (0) matrix at the fibre—matrix interface, and the nature of the fibre—matrix bonding mechanism, were studied via the use of focused ion beam (FIB) cross-sectioning, FIB imaging, scanning electron microscopy, and mechanical peel testing. The results show that the inclusion of the NiTi SMA fibres had a significant effect on the surrounding Al matrix microstructure during the UC process. Additionally, the fibre—matrix bonding mechanism appeared to be mechanical entrapment with the SMA surface showing signs of fatigue from the UC embedding process.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of recent trends in ultrasonic additive manufacturing: current challenges and future prospects;Rapid Prototyping Journal;2023-01-25

2. Complementary catalysis and analysis within solid state additively manufactured metal micro flow reactors;Scientific Reports;2022-03-24

3. Technology overview of metal additive manufacturing processes;PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN MANUFACTURING ENGINEERING RESEARCH 2021: ICRAMER 2021;2022

4. Metal Sheet Lamination – Ultrasonic;Encyclopedia of Materials: Metals and Alloys;2022

5. Ultrasonic Deposition of Carbon Nanotubes on Polycrystalline Cubic Boron Nitride Composites;Materials;2021-01-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3