Paper 12: Generation of Hydraulic Noise in Centrifugal Pumps

Author:

Simpson H. C.1,Macaskill R.1,Clark T. A.1

Affiliation:

1. G. and J. Weir Ltd, Glasgow

Abstract

The production of hydraulic noise by two types of centrifugal pumps—volute pumps and diffuser pumps—was examined to determine the effect of design and operating conditions on the level of noise generated in the pumped liquid. Experimental work with hydrophones in the exit and entrance to the pumps showed that for both pumps, the dominant frequencies in the noise spectrum were at rotational speed and blade number times rotational speed. It was also found that the distance between cutwater and impeller tip is critical in a volute pump as far as blade frequency noise is concerned. Analysis of the relation between the noise measured by the hydrophones and the fluctuating pressure produced by the pump and the water flow in the inlet and outlet ducts showed that the noise can be interpreted as being directly related to the unsteady flow of water issuing from the impeller. Test results of blade frequency noise levels were correlated with a theoretical analysis for static pressure fluctuations in the pump exit and were shown to be in good agreement. A correlation of general hydraulic noise level with pump specific speed and power consumption was also developed and shown to be reliable to within +2 dB.

Publisher

SAGE Publications

Subject

General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flow-induced noise sources and reduction methods in centrifugal pumps: A literature review;Physics of Fluids;2022-08

2. Strömungsgeräusche;Taschenbuch der Technischen Akustik;2019

3. Study of Flow Induced Noise in Vertical Inline Pump Using Lighthill Analogy;MATEC Web of Conferences;2018

4. Strömungsgeräusche;Strömungsgeräusche;2017

5. Strömungsgeräusche;Taschenbuch der Technischen Akustik;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3