Paper 14: Acoustic Detection of Cavitation

Author:

Pearsall I. S.1

Affiliation:

1. Fluids Group, National Engineering Laboratory, East Kilbride, Glasgow.

Abstract

The onset of cavitation in a hydraulic machine can be determined visually and its effect on performance by performance tests. It would be convenient to have an alternative method that required neither transparent sections nor expensive tests. Initial tests have been made measuring noise over a frequency range of 20 c/s-20 kc/s in one-third octave bands, on a number of pumps and turbines. An accelerometer attached to the casing was used. The tests indicated that, generally, the onset of cavitation was accompanied by a rise in the high-frequency noise, whilst the low-frequency noise increased as the cavitation developed. A maximum of cavitation noise was reached before the efficiency and load fell off. In some cases difficulty was experienced because blade cavitation was drowned by noise caused by other cavitation, such as the vortex in a Francis turbine. It also appears that the noise following the onset of cavitation is at the frequency which is used as a critical frequency in accelerated erosion tests. Further development of techniques is required, but the initial tests are encouraging.

Publisher

SAGE Publications

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spectral Analysis of Pressure, Noise and Vibration Velocity Measurement in Cavitation;Measurement Science Review;2017-11-22

2. Dimensional Analysis;Fluid Mechanics and Thermodynamics of Turbomachinery;2014

3. Hydrodynamics and Cavitation of Pumps;Fluid Dynamics of Cavitation and Cavitating Turbopumps;2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3