Vibration of a Spring-Supported Body

Author:

Grootenhuis P.1,Ewins D. J.2

Affiliation:

1. Reader, Mechanical Engineering Department, Imperial College of Science and Technology, London. Associate Member of the Institution

2. Engineering Laboratories, Cambridge University. Formerly at Imperial College of Science and Technology

Abstract

The equations of motion for a rigid body supported on four springs are derived for the general case of the centre-of-gravity being anywhere within the body and allowing for the sideways as well as the longitudinal stiffnesses of the springs. This constitutes a six-degrees-of-freedom case with three degrees of asymmetry. Coupling between motions in all directions occurs even when the centre-of-gravity is at the geometric centre with the exception then of vertical oscillations and rotation about the vertical axis. Any number of additional springs can be allowed for by adding terms to the expression for the potential energy stored in the springs. Allowance is made in the expression for kinetic energy for the products of inertia which arise with an offset centre-of-gravity. The real case is simulated for purposes of analysis by replacing the rigid body by a rectangular box with a light framework and all the mass concentrated at the eight corners. The matrix solution is changed into dimensionless parameters and the effect of an offset centre-of-gravity upon the eigenvalues and eigenvectors studied. Only the proportions of the box and the stiffness ratio between sideways to longitudinal stiffness of the springs remain as factors. The numerical example given is for proportions of height to width to length of 3/4/5 and for a stiffness ratio of 5. Small amounts of offset of the centre-of-gravity from the geometric centre do not alter the dynamic behaviour of the system much but displacing the total mass towards either a lower or an upper corner has marked effects. Some of the natural frequencies associated with motion in rotation when the system is symmetric become less than the frequencies connected with motion in translation for the centre-of-gravity being close to a corner connected to a spring. A large region free from any natural frequency arises when the centre-of-gravity is moved towards a corner furthest removed from the plane containing the springs. The asymptotic conditions for the position of the centre-of-gravity are also considered.

Publisher

SAGE Publications

Subject

General Engineering

Reference8 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vibration Isolation: Use and Characterization;Rubber Chemistry and Technology;1980-11-01

2. Vibration isolation: Use and characterization;The Journal of the Acoustical Society of America;1979-11

3. Analytical and design aspects of passenger carrying vehicles using controlled d.c. electromagnetic suspension;IFAC Proceedings Volumes;1977-07

4. Subharmonic instability and coupled motions in non-linear vibration isolating suspensions;Journal of Sound and Vibration;1969-07

5. Vibration isolation using non-linear springs;International Journal of Mechanical Sciences;1967-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3