Machining Forces: Some Effects of Tool Vibration

Author:

Wallace P. W.1,Andrew C.2

Affiliation:

1. Graduate of the Institution

2. Associate Member of the Institution

Abstract

When tool vibration occurs during machining both the undeformed chip thickness and the cutting forces have oscillating components. An examination of previous work reveals that both the relative phases and amplitudes of the oscillating forces and the oscillating undeformed chip thickness can be affected appreciably by changes in frequency. The explanations for this behaviour which have been put forward are not entirely consistent with previous experimental evidence. In the present work an analysis of the thrust forces occurring during tool vibration is proposed. The analysis is based on the assumption that there are two components to the oscillating thrust force: (1) a component proportional to, and in phase with, the oscillations in undeformed chip thickness and (2) a component, caused by contact between a small area of the tool flank and the freshly cut work surface, which leads the oscillation in undeformed chip thickness by 90°. Experimental results are presented which validate the assumptions made in the analysis. On applying the analysis to present and past experimental results, there is good agreement between theory and experiment when cutting at sufficient speed to prevent the formation of a substantial built-up edge: when cutting within the built-up edge speed range the theoretical predictions are less satisfactory, though still qualitatively correct. The results also show that changes in undeformed chip thickness have a smaller effect on the tool forces under vibratory conditions than under steady conditions.

Publisher

SAGE Publications

Subject

General Engineering

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fundamental investigation on process damping potentials of cutting tools with flank face chamfers;CIRP Journal of Manufacturing Science and Technology;2023-12

2. Mechanism and modeling of machining process damping: a review;The International Journal of Advanced Manufacturing Technology;2023-06-01

3. Physics-informed Bayesian machine learning case study: Integral blade rotors;Journal of Manufacturing Processes;2023-01

4. Emulating Chatter with Process Damping in Turning Using a Hardware-in-the-Loop Simulator;Advances in Forming, Machining and Automation;2022-10-04

5. Identification of rake and flank face engagement parameters using a dexel-based material removal simulation with an oriented sweep volume;CIRP Journal of Manufacturing Science and Technology;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3