Numerical simulations of homogeneous charge compression ignition engines with high levels of residual gas

Author:

Lee C-W1,Mastorakos E1

Affiliation:

1. Department of Engineering, University of Cambridge, Cambridge, UK

Abstract

In order to account for the effect of mixture inhomogeneity in HCCI engines utilizing high levels of residual gas and to estimate accurate initial conditions, a sequential numerical procedure was devised. A one-dimensional (1D) engine cycle simulation and a three-dimensional (3D) CFD analysis were used to calculate the residual gas overall level and its spatial distribution. A Monte-Carlo method for the probability density function (PDF) of the mass fraction and temperature, assuming negligible spatial inhomogeneity in the mean quantities but including finite small-scale fluctuations, was used to allow for micro-mixing in the evolution of the chemical reactions. The computational fluid dynamics (CFD) analysis confirmed that substantial scalar inhomogeneity persists up to top dead centre (TDC). The result from the procedure showed a close prediction of the pressure profile from the experiment. However, the u HC level is underpredicted, attributed to the assumed spatial homogeneity of the mean quantities in the Monte-Carlo simulation, which causes an overprediction of the scalar fluctuation decay. Parametric studies of the initial mixture inhomogeneity and turbulence timescale showed that they affect both the ignition timing and combustion duration. A comparison of three mixing models (IEM, modified Curl, and EIEM) showed that the EIEM model predicts a later ignition. The results suggested that accurate prediction of pollutant emission in HCCI engines with high levels of residual gas can be achieved only by a fully 3D calculation incorporating turbulence-chemistry interactions, although combustion phasing and duration can be predicted with adequate accuracy with a volume-averaged representation of the initial residual gas fluctuations.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3