A one-dimensional lean NOx trap model with a global kinetic mechanism that includes NH3 and N2O

Author:

Depcik C1,Assanis D1,Bevan K2

Affiliation:

1. The University of Michigan, Ann Arbor, Michigan, USA

2. Eaton Corporation, Southfield, Michigan, USA

Abstract

Eaton has developed an aftertreatment system for medium- and heavy-duty diesel engines in response to the US 2010 regulations. This system consists of a fuel reformer, a lean NO x trap (LNT), and an ammonia selective catalytic reduction (SCR) catalyst in series. A transient, one-dimensional model of the system was developed to improve system performance, reduce experimental testing, and optimize system design. In this paper, the LNT portion of this model is presented. The model simulates flow, heat transfer, and chemical reactions in the LNT catalyst. A global LNT chemical kinetic mechanism was developed to simulate the key catalytic processes with the minimum number of reactions. The model can be used to predict LNT catalyst performance over a range of operating conditions and driving cycles. Simulated species concentrations and gas temperatures at the LNT outlet were compared with experimental data at three steady state engine conditions over a 13-mode test. The conditions were chosen to develop and test the model over a range of gas temperatures, space velocities, and species concentrations. The LNT model predicts species trends and magnitudes with reasonable accuracy in comparison with experimental data. The simulated LNT NO x conversion efficiency over the 13-mode test was 67 per cent, compared with 63 per cent for the experiment.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3