Effects of exhaust gas recirculation on diesel particulate matter morphology and NOx emissions

Author:

Lee K O1,Zhu J1,Song J1

Affiliation:

1. Transportation Technology R&D Center, Argonne National Laboratory, Argonne, Illinois, USA

Abstract

Diesel particulate morphology and nitrogen oxides (NO x) emissions were investigated in detail to reveal the effects of exhaust gas recirculation (EGR). The different rates of EGR were precisely controlled by using a customized engine control unit in a 1.7 l turbocharged common-rail direct-injection diesel engine. The tests, which combined two different EGR modes (i.e. constant boost pressure (CBP) and constant oxygen-to-fuel ratio (COFR)), were designed to decouple the effects of EGR thermal and dilution processes. Particulate samples were collected directly from the raw engine exhaust by using a novel thermophoretic soot-sampling system. The samples were examined and imaged with a high-resolution transmission electron microscope and quantitatively analysed by using a customized image-processing/data-acquisition system. Results showed that the particulate dimensions, number density of primary particles, and soot yield all changed significantly under various EGR rates. The NO x emissions also varied significantly as the EGR rate changed, showing a typical trade-off with respect to the data measured for particulate emissions. At low EGR rates, the thermal effect was the dominant phenomenon that affected the changes of the measured morphological characters, while at higher EGR rates the dilution effect became more important. However, the fractal geometry of diesel particulates did not change significantly between the two EGR modes, suggesting that the influence of EGR dilution was less than that of the thermal process. EGR operation providing a COFR at the same EGR rate yielded a significant benefit in particulate emissions and engine power output, while still maintaining the reduction of NO x emissions at a satisfactory level.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3