Affiliation:
1. Centre for Automotive Engineering, University of Brighton, Brighton, UK
2. Laboratory of Multiphase Physics, Tallinn University of Technology, Tallinn, Estonia
Abstract
A phenomenological study of vortex ring-like structures in gasoline fuel sprays is presented for two types of production fuel injectors: a low-pressure, port fuel injector (PFI) and a high-pressure atomizer that injects fuel directly into an engine combustion chamber (G-DI). High-speed photography and phase Doppler anemometry (PDA) were used to study the fuel sprays. In general, each spray was seen to comprise three distinct periods: an initial, unsteady phase; a quasi-steady injection phase; and an exponential trailing phase. For both injectors, vortex ring-like structures could be clearly traced in the tail of the sprays. The location of the region of maximal vorticity of the droplet and gas mixture was used to calculate the temporal evolution of the radial and axial components of the translational velocity of the vortex ring-like structures. The radial components of this velocity remained close to zero in both cases. The experimental results were used to evaluate the robustness of previously developed models of laminar and turbulent vortex rings. The normalized time, , and normalized axial velocity, , were introduced, where tinit is the time of initial observation of vortex ring-like structures. The time dependence of on was approximated as and for the PFI and G-DI sprays respectively. The G-DI spray compared favourably with the analytical vortex ring model, predicting , in the limit of long times, where α = 3/2 in the laminar case and α = 3/4 when the effects of turbulence are taken into account. The results for the PFI spray do not seem to be compatible with the predictions of the available theoretical models.
Subject
Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献