Simultaneous localization and mapping: swarm robot mutual localization and sonar arc bidirectional carving mapping

Author:

Xu S12,Ji Z3,Pham D T2,Yu F1

Affiliation:

1. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, People's Republic of China

2. Manufacturing Engineering Centre, Cardiff University, Cardiff, UK

3. School of Computer Science, University of Hertfordshire, Hatfield, UK

Abstract

This work primarily aims to study robot swarm global mapping in a static indoor environment. Due to the prerequisite estimation of the robots' own poses, it is upgraded to a simultaneous localization and mapping (SLAM) problem. Five techniques are proposed to solve the SLAM problem, including the extended Kalman filter (EKF)-based mutual localization, sonar arc bidirectional carving mapping, grid-oriented correlation, working robot group substitution, and termination rule. The EKF mutual localization algorithm updates the pose estimates of not only the current robot, but also the landmark-functioned robots. The arc-carving mapping algorithm is to increase the azimuth resolution of sonar readings by using their freespace regions to shrink the possible regions. It is further improved in both accuracy and efficiency by the creative ideas of bidirectional carving, grid-orientedly correlated-arc carving, working robot group substitution, and termination rule. Software simulation and hardware experiment have verified the feasibility of the proposed SLAM philosophy when implemented in a typical medium-cluttered office by a team of three robots. Besides the combined effect, individual algorithm components have also been investigated.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Closed-Loop Motion Control of Robotic Swarms – A Tether-Based Strategy;IEEE Transactions on Robotics;2022-12

2. Plane-based grid map: A robot-centric mapping algorithm for wheel-legged rover motion planning in unstructured terrain environments;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2022-06-02

3. An inchworm-inspired motion strategy for robotic swarms;Robotica;2021-04-23

4. A high-performance millirobot for swarm-behaviour studies: Swarm-topology estimation;International Journal of Advanced Robotic Systems;2019-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3