Hydrodynamics of Taylor flow in small channels: A Review

Author:

Angeli P1,Gavriilidis A1

Affiliation:

1. Department of Chemical Engineering, University College London, London, UK

Abstract

The improved mass transfer characteristics of Taylor flow, make it an attractive flow pattern for carrying out gas—liquid operations in microchannels. Mass transfer characteristics are affected by the hydrodynamic properties of the flow such as thickness of the liquid film that surrounds the bubbles, bubble velocity, bubble and slug lengths, mixing, and flow circulation in the liquid slugs, and pressure drop. Experimental, theoretical, and modelling attempts to predict these properties are reviewed and relevant correlations are given. Most of these refer to capillaries but there are number of studies on square channels. In general, flow properties are well understood and predicted for fully formed Taylor bubbles in a developed flow and in clean systems, particularly in circular channels. However, the presence of impurities and their effect on interfacial tension cannot be fully accounted for. In addition, there is still uncertainty on the size of bubbles and slugs that form under certain operating and inlet conditions, while there is little information for channels with non-circular cross-sections.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 170 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3