An experimental and numerical study of the expansion forming of a thick-walled microgroove tube

Author:

Tang D1,Peng Y1,Li D1

Affiliation:

1. Institute of Knowledge-Based Engineering, School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai, People's Republic of China

Abstract

CO2 refrigerant-based air conditioning and refrigeration (ACR) is an increasing concern in many industrial sectors for its zero ozone depletion potential. One of the major requirements in its application is the forming technology of thick-walled tube according to the extremely high pressure working conditions of the ACR system. This article presents a study on the expansion process joining the thick-walled microgroove copper tube to aluminium fins. Experiments of the forming process have been carried out. Finite-element models are developed to investigate the deformation of overall and local structures. Evaluation of the joining quality along the longitude axis of the tube is first attempted. The agreement of the results on the contact surface profile confirms that the joint is far away from full contact in the axial section. Formation mechanism of the unexpected contact status lies in displacement of the contact points along the section of the fin collar, which is mainly related to the expanding ratio. To improve the forming quality, discussion on processing parameters and die geometry is conducted. Results show that the expanding ratio is the major factor influencing the thermal—mechanical performance of the joint and 2–6 per cent can be the comprehensively beneficial range for a thick-walled ACR tube; average contact pressure can reach 1.76 Mpa under proper set. The results are helpful for improving the energy efficiency ratio performance of the natural refrigerant-based system.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A study on the contact quality improvement of fin to tube assemblies;Transactions of the Canadian Society for Mechanical Engineering;2023-12-12

2. Thermal resistance study and numerical optimization of plate fin-and-tube with mechanical expanded joint;International Journal of Thermal Sciences;2023-08

3. Analysis of the mechanical expansion process of thin-walled tubes for air heat-exchanger production;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2022-02-24

4. Experiment based modeling of the mechanical expansion of tubes for the construction of heat exchangers;Procedia Structural Integrity;2018

5. Numerical analysis of tube expansion process for heat exchangers production;International Journal of Mechanical Sciences;2016-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3