An experimental and numerical investigation of fracture resistance behaviour of a dissimilar metal welded joint

Author:

Samal M K1,Balani K2,Seidenfuss M3,Roos E3

Affiliation:

1. Health Safety and Environment Group, Bhabha Atomic Research Centre, Mumbai, India

2. Department of Materials and Metallurgical Engineering, Indian Institute of Technology Kanpur, Kanpur, India

3. Institut für Material Prüfung Werkstoffkunde und Festigkeitslehre, Universität Stuttgart, Germany

Abstract

Dissimilar welds impose a challenge to the engineers concerned with the structural integrity assessment of these joints. This is because of the highly inhomogeneous nature of these joints in terms of their microstructure, mechanical, thermal, and fracture properties. Fracture mechanics-based concepts cannot be directly used because of the problems associated with the definition of a suitable crack-tip loading parameter such as J-integral crack tip opening displacement (CTOD), etc. Again, depending upon the location of initial crack (i.e. base, weld, buttering, different interfaces, etc.), further crack propagation can occur in any material. The objective of the current work is to use micro-mechanical models of ductile fracture for initiation and propagation of cracks in the bimetallic welds. The authors have developed a finite element formulation that incorporates the porous plasticity yield function due to Gurson—Tvergaard—Needleman and utilized it here for the analysis. Experiments have been conducted at MPA Stuttgart using single edge-notched bend (SEB) specimens with cracks at different locations of the joint. The micro-mechanical (Gurson) parameters of four different materials (i.e. ferrite, austenite, buttering, and weld) have been determined individually by simulation of fracture resistance behaviour of SEB specimens and comparing the simulated results with those of the experiment. In order to demonstrate the effectiveness of the damage model in predicting the crack growth in the actual bimetallic-welded specimen, simulation of two SEB specimens (with initial crack at ferrite—buttering and buttering—weld interface) has been carried out. The simulated fracture resistance behaviour compares well with those of the experiment.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3