Model reduction technique for mechanical behaviour modelling: Efficiency criteria and validity domain assessment

Author:

Ordaz-Hernandez K1,Fischer X2,Bennis F1

Affiliation:

1. ECN IRCCyN — UMR CNRS 6597, Ecole Centrale de Nantes, Nantes Cedex, France

2. ESTIA LIPSI, Technopôle Izarbel, Bidart, France

Abstract

The current paper presents the study of a neural network-based technique used to create fast, reduced, non-linear behavioural models. The studied approach is the use of artificial neural networks (ANNs) as a model reduction technique to create more efficient models, mostly in terms of computational speed. The test case is the deformation of a cantilever beam under large deflections (geometrical non-linearity). A reduced model is created by means of a multi-layer feed-forward neural network, a type of ANN reported as ‘universal approximator’ in the literature. Then it is compared with two finite-element models: linear (inaccurate for large deflections but fast) and non-linear (accurate but slow). Under large displacements, the reduced model approximates well the non-linear model while having similar speed to the linear model. Unfortunately, the resulting model presents a shortening of its validity domain, as being incapable of approximating the deformed configuration of the cantilever beam under small displacements. In other words, the ANN-based model provides a very good compromise between accuracy and speed within its validity domain, despite the low fidelity presented: accurate for large displacements but inaccurate for small displacements.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3