A numerical method for the prediction of wave pattern of surface piercing cavitating hydrofoils

Author:

Bal S1

Affiliation:

1. Faculty of Naval Architecture and Ocean Engineering, Istanbul Technical University, Maslak-Sariyer, Istanbul 34469, Turkey

Abstract

The iterative boundary-element method, which is originally developed before for submerged cavitating hydrofoils is extended and modified to predict the wave pattern and lift and drag values of surface piercing cavitating hydrofoils (vertical struts) moving with a constant speed on the free surface. The iterative numerical method, which is based on the Green's theorem, allows the separation of surface piercing cavitating hydrofoil (or vertical strut) problem and the free surface problem. Those problems are solved separately, with the effects of one on the other being accounted for in an iterative manner. The wetted surface of the body (hydrofoil or strut) and the free surface are modelled with constant strength dipole and constant strength source panels. In order to prevent upstream waves the source strengths from some distance in front of the body to the end of the truncated upstream boundary are enforced to be zero. No radiation condition is enforced for downstream and transverse boundaries on the free surface. The method is applied to a rectangular non-cavitating hydrofoil with a yaw angle to compare the results with those of experiments and other numerical methods given in the literature. Then, the method is applied to a rectangular cavitating vertical strut and the effects of Froude number on wave pattern and lift and drag values of vertical strut are discussed.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3