The effect of ring baffles on the hydrodynamics of a gas—solid bubbling fluidized bed using computational fluid dynamics

Author:

Hosseini S H1,Rahimi R1,Zivdar M1,Samimi A1

Affiliation:

1. Department of Chemical Engineering, University of Sistan and Baluchestan, Zahedan, Iran

Abstract

An Eulerian—Eulerian two-fluid model (TFM) integrating the kinetic theory for emulsion phase was used to simulate gas—solid fluidized beds. Validation of the model was investigated based on hydrodynamic parameters such as bed expansion ratio, H/ H0, gas volume fraction profile, bubble behaviour, and motion of the particles. A good agreement was found between numerical results and experimental values. The model was used to study a bubbling fluidized bed (BFB) including the ring baffles. Predicted results show that the ring baffles have an important role in the flow pattern of the bed. Baffles increase the bed expansion height and particle velocities at axial locations on the top of the highest baffle as well as uniform distribution of gas volume fraction between the baffles area. In spite of increasing the dead zones in the bed, ring baffles cause the improvement of mixing and heat transfer in the bed. The present study provides a useful basis for further works on the effect of baffles in BFBs.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3