Study on combined influence of inter-asperity cavitation and elastic deformation of non-Gaussian surfaces on flow factors

Author:

Meng F-M1,Qin D-T1,Chen H-B2,Hu Y-Z2,Wang H2

Affiliation:

1. State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing, People's Republic of China

2. State Key Laboratory of Tribology, Tsinghua University, Beijing, People's Republic of China

Abstract

The combined influence of inter-asperity cavitation and elastic deformation of non-Gaussian surfaces on flow factors is numerically investigated based on the equations for flow factor analyses, since some engineering surfaces are non-Gaussian. For this task, non-Gaussian surfaces are generated at first through a digital filter technique by using authors’ computer code whose validity is proven. The numerical results show that the pressure flow factor increases whereas the shear flow factor decreases with low film thickness-to-roughness ratio ( h/σ < 3 or so). This is due to the above-said combined influence, if the oblique flow of lubricant is not obvious. But for a high film thickness-to-roughness ratio (approximately h/σ ≥ 3), the combined influence becomes weaker, hence ignored. Therefore, the above-said combined effect similar to the one from Gaussian surface circumstances ought to be considered in flow factor analyses and their applications.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3