Laser pulse heating and phase change process: A comparison of volumetric heat source models

Author:

Shuja S Z1,Yilbas B S1,Ayar Z2

Affiliation:

1. ME Department, KFUPM, Dhahran, Saudi Arabia

2. Computer Science Department, KFUPM, Dhahran, Saudi Arabia

Abstract

In the laser heating process, irradiated energy is absorbed on the surface skin of the substrate material. This results in excess computational efforts due to grid arrangement in the irradiated region and the remaining region in the solution domain due to the fine grid spacing in the irradiated region. However, consideration of the surface heat source minimizes this problem, since it does not require fine grid spacing in the skin of the surface. In the present study, laser heating and phase change in the irradiated region are modelled. The laser heating situation is modelled after considering the volumetric heat source incorporating an absorption process (Beer—Lambert's Law) and the surface heat source model. The temperature distribution, melt layer, and solid—liquid zone (mushy zone) formed in the heated region are predicted for the volumetric and surface heat source heating models. This study is extended to include the influence of spatial distribution of the laser pulse on temperature rise and phase change processes. It is found that the surface heat source model predicts higher values of temperature than those corresponding to the volumetric heat source in the surface vicinity. As the depth increases, temperature distributions predicted from both models become almost identical. In addition, the melt layer thickness and mushy zone predicted from both models are almost identical.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermal analysis of the laser cutting process;The Laser Cutting Process;2018

2. CO2 laser heating of surfaces: Melt pool formation at surface;Optics & Laser Technology;2012-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3