Fabrication Error Sensitivity Analysis of Three-Degree-Of-Freedom Parallel Submicron Positioning Stage

Author:

Chen S-L1,Huang Y-C1,Tomizuka M2

Affiliation:

1. Institute of Manufacturing Engineering, National Cheng-Kung University, Taiwan, Republic of China

2. Department of Mechanical Engineering, University of California, Berkeley, California, USA

Abstract

A new type of six-degree-of-freedom (DOF) precision positioning stage is designed and investigated in this study. This stage may be applied to couple and align an array waveguide grating (AWG) with a fibre array. It has an X-Y horizontal motion stage which consists of an X-Y horizontal motion mechanism and wedge-shaped mechanism for reducing positioning error. In addition, a rotational servo stage which provides the vertical γ-axis rotational DOF is arranged on the horizontal X-Y motion stage. The precision positioning stage is complete with three degrees of freedom parallel kinematic mechanism (α, β, and Z axes) on the rotational servo stage.To control this positioning stage precisely, an error model is obviously necessary and it is established in this paper. Because the assembly technology of three-DOF serial positioning stage is well developed, only the fabricating error parameters of the three-DOF parallel kinematic positioning stage are considered and investigated. The inverse and forward kinematics of the stage including error correction will be developed. The error sensitivity is analysed and the results will be used to improve the performance of the developed system. According to the analysis results, the positioning accuracy of Y0-axis is affected insignificantly by fabricating errors. Therefore, the optical axis of AWG or fibre array on the loading flat-top should be parallel to the X0-axis if this positioning stage is applied to couple an AWG with a fibre array.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference14 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3