Optimum design of rolling element bearings using a genetic algorithm—differential evolution (GA—DE) hybrid algorithm

Author:

Lin W Y1

Affiliation:

1. Department of Mechanical Engineering, De Lin Institute of Technology, No. 1 Lane 380, Qingyan Road, Tucheng City 236, Republic of China,

Abstract

Binary-code genetic algorithms (BGA) have been used to obtain the optimum design for deep groove ball bearings, based on maximum fatigue life as an objective function. The problem has ten design variables and 20 constraint conditions. This method can find better basic dynamic loads rating than those listed in standard catalogues. However, the BGA algorithm requires a tremendous number of evaluations of the objective function per case to achieve convergence (e.g. about 5 200 000 for a representative case). To overcome this difficulty, a hybrid evolutionary algorithm by combining real-valued genetic algorithm (GA) with differential evolution (DE) is used together with the proper handling of constraints for this optimum design task. Findings show that the GA—DE algorithm can successfully find the better dynamic loads rating, about 1.3—11.1 per cent higher than those obtained using the traditional BGA. Moreover, the mean number of evaluations of the objective function required to achieve convergence is about 3011, using the GA—DE algorithm, as opposed to about 5 200 000 for a representative case using the BGA. Comparison shows the GA—DE algorithm to be much more effective and efficient than the BGA.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3