Dynamic response of a thick functionally graded material tube under a moving load

Author:

Hasheminejad S M1,Komeili M1

Affiliation:

1. Acoustics Research Laboratory, Iran University of Science and Technology, Tehran, Iran

Abstract

An analysis for axisymmetric steady-state response of an arbitrarily thick, isotropic, and functionally graded circular cylindrical shell of infinite length subjected to an axially moving normal ring load is presented. The mechanical properties of the graded shell are assumed to vary smoothly and continuously with the change of volume concentrations of the constituting materials across the thickness of the shell according to a power law distribution. The problem solution is derived by using Fourier transformation with respect to a moving reference frame in conjunction with the T-matrix solution technique that involves a system global transfer matrix, formed by applying continuity of the displacement and stress components at the interfaces of neighbouring layers. The analytical results are illustrated with numerical examples in which a metal-ceramic functionally graded material (FGM) pipe, composed of aluminium and zirconia, is subjected to a normal ring load travelling along the tube at constant speed. Four types of pipes are configured, i.e. a ceramic-rich composition with the ceramic at the inner (or outer) interface, and also a metal-rich composition with the metal at the inner (or outer) interface of the pipe. The presented model is used to determine the critical velocity of the moving load as a function of shell thickness for the selected material compositional gradient profiles. The effects of load velocity and shell thickness on the basic dynamic field quantities such as the mid-plane radial displacement and hoop stress amplitude along the pipe axis are also evaluated and discussed. Moreover, the response curves for the FGM shells are compared with those of equivalent bi-laminate shells containing comparable total volume fractions of constituent materials. Limiting cases are considered and good agreements with the solutions available in the literature are obtained.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3