Affiliation:
1. Department of Mechanical Engineering, Mississippi State University, Mississippi, USA
Abstract
This article discusses the thermodynamic performance of an ideal Stirling cycle engine. This investigation uses the first law of thermodynamics to obtain trends of total heat addition, net work output, and thermal efficiency with varying dead volume percentage and regenerator effectiveness. Second law analysis is used to obtain trends for the total entropy generation of the cycle. In addition, the entropy generation of each component contributing to the Stirling cycle processes is considered. In particular, parametric studies of dead volume effects and regenerator effectiveness on Stirling engine performance are investigated. Finally, the thermodynamic availability of the system is assessed to determine theoretical second law efficiencies based on the useful exergy output of the cycle. Results indicate that a Stirling engine has high net work output and thermal efficiency for low dead volume percentages and high regenerator effectiveness. For example, compared to an engine with zero dead volume and perfect regeneration, an engine with 40 per cent dead volume and a regenerator effectiveness of 0.8 is shown to have ∼60 per cent less net work output and a 70 per cent smaller thermal efficiency. Additionally, this engine results in approximately nine times greater overall entropy generation and 55 per cent smaller second law efficiency.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献