Numerical study of the fin effect on mixed convection heat transfer in a lid-driven cavity

Author:

Darzi A A R1,Farhadi M1,Sedighi K1

Affiliation:

1. Faculty of Mechanical Engineering, Babol University of Technology, Babol, Islamic Republic of Iran

Abstract

In this study, the mixed convective heat transfer in a lid-driven cavity was investigated numerically. The finite volume discritization method was used to solve the momentum and energy equations by using the classic Boussinesq incompressible approximation. The cavity vertical walls are insulated whereas the bottom (hot wall) and top (cold wall) surface are maintained at a uniform temperature and fins are located on bottom wall. The effect of fin numbers over the flow field and heat transfer was investigated at various Richardson numbers. Study was carried out for Richardson numbers ranging from 0.01 to 10, fin numbers between 1 and 7, fin height ratio change from 0.05 to 0.3, and thermal conductivity ratio (fin to fluid) from 10 to 104, respectively. The results are presented in the form of streamlines, temperature contours, and Nusselt number distributions. The results show that the Nusselt number increases when the number of fin and fin height decrease. In addition, in all cases an increasing Richardson number caused increasing the relative Nusselt number ( Nu / Nu0). The heat transfer enhancement was observed at low fin numbers (1 and 3) and high Richardson number in comparison with the cavity without fins.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3