Experimental studies of the aerodynamics of spinning and stationary footballs

Author:

Passmore M A1,Tuplin S1,Spencer A1,Jones R2

Affiliation:

1. Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, UK

2. Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, UK

Abstract

The accurate discrimination of the aerodynamic parameters affecting the flight of sports balls is essential in the product development process. Aerodynamic studies reported to date have been limited, primarily because of the inherent difficulty of making accurate measurements on a moving or spinning ball. Manufacturers therefore generally rely on field trials to determine ball performance, but the approach is time-consuming and subject to considerable variability. The current paper describes the development of a method for mounting stationary and spinning footballs in a wind tunnel to enable accurate force data to be obtained. The technique is applied to a number of footballs with differing constructions and the results reported. Significant differences in performance are noted for both stationary and spinning balls and the importance of the ball orientation to the flow is highlighted. To put the aerodynamic data into context the results are applied in a flight model to predict the potential differences in the behaviour of each ball in the air. The aerodynamic differences are shown to have a considerable effect on the flight path and the effect of orientation is shown to be particularly significant when a ball is rotating slowly. Though the techniques reported here are applied to a football they are equally applicable to other ball types.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3