Dual surface beamforming and acoustical holography for sound field visualization in reverberant environments

Author:

Cho Yong Thung1,Roan M J1,Bolton J Stuart2

Affiliation:

1. Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA

2. Ray W. Herrick Laboratories, School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA

Abstract

Near-field acoustical holography is a technique that has been widely used to visualize noise sources from pressure measurements in spaces that can be assumed to be anechoic or semi-anechoic. Previously, a dual surface acoustical holography procedure based on making measurements on two surfaces between the source and a reflecting surface was introduced to remove the effects of reverberation. Little work has been performed in which beamforming has been used to visualize sources based on dual surface, near-field measurements in a reverberant environment: such a procedure is described here. Because many practical measurement environments are not completely anechoic, the source resolution accuracy of dual surface acoustical holography and beamforming procedures in reverberant environments is compared here by using numerical simulations. It has been found that dual surface acoustical holography provides the clearest representation of the source location when sound waves radiating from the source and the reflected waves are propagating in the opposite directions and when the measurement surfaces are conformal with the source geometry. However, it has also been found that dual surface beamforming provides more consistent source resolution performance regardless of the relative direction of wave propagation of the source and reflected waves.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3