Modelling and analysis of ship roll oscillations interacting with stationary icebergs

Author:

Grace I F1,Ibrahim R A1

Affiliation:

1. Wayne State University, Department of Mechanical Engineering, Detroit, Michigan, USA

Abstract

Impact dynamic interaction of ships with solid ice or stationary rigid structures is a serious problem that affects the safe operation and navigation in arctic regions. The purpose of this study is to present two analytical models of impact interaction between ship roll dynamics and one-side rigid barrier. These models are the phenomenological modelling represented by a power law in stiffness and damping forces, and Zhuravlev non-smooth coordinate transformation. Extensive numerical simulations are carried out for all initial conditions covered by the ship grazing orbit for different values of excitation amplitude and frequencies of external wave roll moment. The basins of attraction of safe operation are obtained and reveal the coexistence of different response regimes such as non-impact periodic oscillations, modulation impact motion, period-added impact oscillations, chaotic impact motion, and unbounded rotational motion. The results are summarized in the bifurcation diagram in terms of response-excitation amplitudes plane. The stability fraction index is obtained for different values of excitation frequency based on the ratio of the area of bounded roll oscillations to the total area of the grazing orbit.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Arctic naval launch and recovery operations, under ice impact interactions;Applications in Engineering Science;2023-09

2. Constrained Control of Coexisting Attractors in Impact Oscillator with Delay;Journal of Vibration Engineering & Technologies;2023-06-22

3. Constrained Control of Impact Oscillator with Delay;Mechanisms and Machine Science;2022-10-07

4. Physics of phonation offset: Towards understanding relative fundamental frequency observations;The Journal of the Acoustical Society of America;2021-05

5. Nonlinear dynamic characteristics of marine rotor-bearing system under coupled heave and pitch ship motions;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2020-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3