Viscoelastic modelling of rotor—shaft systems using an operator-based approach

Author:

Dutt J K1,Roy H2

Affiliation:

1. Department of Mechanical Engineering, IIT Delhi, Hauz-Khas, New Delhi, India

2. Department of Mechanical Engineering, National Institute of Technology, Rourkela, Orissa, India

Abstract

Damping exists in every material in varying degrees, so materials in general are viscoelastic in nature. Energy storage, as well as dissipation in varying degrees, accompanies every time-varying deformation, with the effect that stress and strain in a material get out of phase. This work presents the development of equations of motion of a rotor—shaft system with a viscoelastic rotor after discretizing the system into finite elements. Subsequently, these equations are used to study the dynamics of the rotor—shaft system in terms of stability limit of spin speed and time response of a disc as a result of unbalance. The primary inspiration for a viscoelastic model arises from the need to capture the influence of broad band spectral behaviour of rotor—shaft materials, primarily polymers and polymer composites, which are principally the materials of light rotors, on the dynamics of rotor—shaft system. For this, the material constitutive relationship has been represented by a differential time operator. Use of operators enables one to consider general linear viscoelastic behaviours, represented in the time domain by multi-element (three, four, or higher elements) spring—dashpot models or internal variable models, for which, in general, instantaneous stress and its derivatives are proportional to instantaneous strain and its derivatives. Again such representation is fairly generic, in a sense that the operator may be suitably chosen according to the material model to obtain the equations of motion of a rotor—shaft system. The equations so developed may be easily used to find the stability limit speed of a rotor—shaft system as well as the time response when the rotor—shaft system is subjected to any dynamic forcing function.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference18 articles.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3