Power and efficiency optimization for combined Brayton and two parallel inverse Brayton cycles. Part 2: Performance optimization

Author:

Zhang W1,Chen L1,Sun F1

Affiliation:

1. Postgraduate School, Naval University of Engineering, Wuhan, People's Republic of China

Abstract

The power and efficiency of the open combined Brayton and two parallel inverse Brayton cycles are analysed and optimized based on the model established using finite-time thermodynamics in Part 1 of the current paper by adjusting the compressor inlet pressure of the two parallel inverse Brayton cycles, the mass flowrate and the distribution of pressure losses along the flow path. It is shown that the power output has a maximum with respect to the compressor inlet pressures of the two parallel inverse Brayton cycles, the air mass flowrate or any of the overall pressure drops, and the maximized power output has an additional maximum with respect to the compressor pressure ratio of the top cycle. The power output and the thermal conversion efficiency have the maximum values when the mass flowrates of the first and the second inverse Brayton cycles are the same. When the optimization is performed with the constraints of a fixed fuel flowrate and the power plant size, the power output and thermal conversion efficiency can be maximized again by properly allocating the fixed overall flow area among the compressor inlet of the top cycle and the turbine outlets of the two parallel inverse Brayton cycles. The numerical examples show the effects of design parameters on the power output and heat conversion efficiency.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3