Design optimization of composite structures for maximum strength using direct simulated annealing

Author:

Ertas A H12,Sonmez F O3

Affiliation:

1. Department of Mechanical Engineering, Karabuk University, Karabuk, Turkey

2. Department of Mechanical Engineering, Ohio University, Athens, Ohio, USA

3. Department of Mechanical Engineering, Bogazici University, Bebek, Istanbul, Turkey

Abstract

Composite materials have been used in many structural applications because of their superior properties. Although composites are less sensitive to deformation, their increased use has emphasized that their deformation behaviours and hence deformation analyses are more complex than for structures of uniform composition. Deformation patterns contingent upon fatigue properties of composites may vary significantly because of the large differences in properties of the fibres and matrix, and the compositions of their sub-constituents. These complexities introduce major deficiencies to methods for composite materials, which often force large factors of safety to be adopted in designs. Consequently, composite structures used in fatigue applications are generally over-designed to eliminate catastrophic failure and are therefore heavier and more costly. Accordingly, the objective of this study is to develop a methodology to maximize the load-carrying capacity or strength of composite structures by minimizing the maximum stress. A stochastic global search algorithm called the direct search simulated annealing is employed in the optimization procedure. The methodology is applied to different types of problems to demonstrate the effectiveness and reliability of the proposed method.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference24 articles.

1. Hahn H. T., Turkgenc O. The effects of loading parameters on fatigue of composite laminates: Part IV. Information systems (Springfield, Virginia: National Technical Information Service (NTIS) 2000): pp. 1–77.

2. Measurement and Assessment of Fatigue Life of Spot-Weld Joints

3. Damage and Damage Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3