Affiliation:
1. Department of Mechanical and Manufacturing Engineering, University of Dublin, Dublin, Ireland
Abstract
Impinging jets are known as a method of achieving high convective heat transfer coefficients. One potential application of impinging jet heat transfer is the air jet cooling of a grinding process. A grinding process generates heat that must be dissipated to avoid thermal damage. To date, this has been achieved using flood cooling with a traditional coolant such as an oil and water mixture; however, using a jet of air in its place has obvious environmental and economic benefits. For a range of grinding test configurations, results are presented of the convective heat transfer from the workpiece, along the notional plane of cut, and of the air flow velocity in a two-dimensional plane perpendicular to the workpiece. It has been shown that a boundary layer that develops around the rotating grinding wheel has the effect of displacing a peak in the distribution of the local heat transfer coefficient from the notional arc of cut. To effectively cool the grinding zone, therefore, it is necessary to penetrate this boundary layer and this can only be achieved when the jet velocity is substantially greater than the tangential velocity of the wheel.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献