Two-dimensional numerical investigation of film cooling by a cool jet injected at various angles for different blowing ratios

Author:

Bayraktar S1,Yilmaz T1

Affiliation:

1. Department of Naval Architecture and Marine Engineering, Yildiz Technical University, Beşiktaş, Istanbul, Turkey

Abstract

This paper presents the thermal and flow characteristics of a cold transverse jet, injected at five different angles (α = 30°, 45°, 60°, 75°, and 90°) into a hot crossflow with four different blowing ratios ( M = 0.1, 0.3, 0.5, and 0.8). Three turbulence models, namely, standard k−∊, renormalization group (RNG) k−∊, and realizable k−∊ are tested for obtaining the accurate turbulence model to predict the effectiveness of film cooling. The tested turbulence models were compared with available experimental data in the literature. The results evinced that the RNG k−∊ turbulence model is the most appropriate among the three. It is also observed that maximum cooling efficiency is obtained at α = 30° and M = 0.8.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of dislocations on film cooling effectiveness of a laidback fan-shaped hole;International Communications in Heat and Mass Transfer;2023-11

2. Film cooling comparison of shaped holes among the pressure surface, the suction surface and the leading edge of turbine vane;Applied Thermal Engineering;2023-01

3. Effect of pulse injection on film cooling performance: Experimental and numerical investigation;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2021-12-26

4. Effects of soot deposition and slot erosion on the mist film-cooling of a flat plate in the presence of upstream ramp;Thermal Science and Engineering Progress;2021-05

5. Film Cooling over Eroded Plates for the Injection of Air–Water Mist Coolant;Iranian Journal of Science and Technology, Transactions of Mechanical Engineering;2020-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3