Fibre laser cutting: Beam absorption characteristics and gas-free remote cutting

Author:

Mahrle A1,Lütke M1,Beyer E1

Affiliation:

1. Dresden University of Technology, Institute for Surface and Manufacturing Technology, Dresden, Germany

Abstract

Laser cutting is still the most common industrial application of CO 2 laser systems but currently available high-power fibre lasers seem to be an attractive alternative to the established CO 2 laser sources for several cutting tasks. Practical experience has shown that fibre lasers enable significantly increased travel rates in the case of inert-gas fusion cutting. This advantage in achieving higher cutting speeds in comparison to CO 2 laser cutting is however a clear function of the sheet thickness to be cut. In the first part of this article, possible reasons for this experimental fact are derived from a thermodynamic analysis of the process with consideration of the specific beam absorption characteristics under cutting conditions. After that, in the second part, a quite new laser cutting variant, namely the gas-free remote cutting process that considerably benefits from the high beam quality of fibre laser systems, is presented.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3