Affiliation:
1. Intelligent Systems Laboratory, Cardiff University, Cardiff, UK
Abstract
Clustering is an important data exploration technique with many applications in different areas of engineering, including engineering design, manufacturing system design, quality assurance, production planning and process planning, modelling, monitoring, and control. The clustering problem has been addressed by researchers from many disciplines. However, efforts to perform effective and efficient clustering on large data sets only started in recent years with the emergence of data mining. The current paper presents an overview of clustering algorithms from a data mining perspective. Attention is paid to techniques of scaling up these algorithms to handle large data sets. The paper also describes a number of engineering applications to illustrate the potential of clustering algorithms as a tool for handling complex real-world problems.
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献